SIMULATING RELIABILITY DISTRIBUTIONS IN APL

David C. Trindade
IBM General Technology Division
Essex Junction, Vermont 05452

Abstract

The theory and methods for generating in APL (pseudo-) random
numbers from the uniform, normal, lognormal, exponential, and

Weibull distributions are presented.
simulation results to parent populations are discussed.

Procedures for comparing
Applica-~

tions to reliability studies are emphasized.

1. INTRODUCTION

The ability to simulate random numbers
from any population is a very valuable
tool for the analyst. For the reliability

engineer in particular, simulation provides
a powerful means to verify the adequacy and

sensitivity of the experimental design and
methods of analysis. In areas where no
theory exists, simulation may provide the

only means of investigating and understand-

ing the fundamental reliability con-
cerns [6].

APL is well suited for simulation studies
because of the flexibility, power, and
simplicity of this language. This paper
presents methods for generating random
numbers in APL from each of the following
distributions: wuniform, normal,
exponential, and Weibull.

cal concepts is assumed. The distinction

between a population and a sample should be

understood.
2. RANDOM NUMBERS

To generate any distribution one needs a
source of random numbers. In APL random
numbers are obtained by use of the monadic
"roll" function ?X, where X is any integer
number. The numbers are called pseudo-
random because a specific algorithm [3]
exists for their calculation. ?X produces
a pseudo-random integer between the values
1 (or 0 depending on the index origin 0I0)
and X. We assume that 0OI0«1 in all
procedures that follow. If X is a vector,
then ?X gives a vector of random numbers,
each number an integer between 1 and X.

3. UNIFORM DISTRIBUTION

The uniform distribution is a continuous
distribution with probability density

lognormal,
Some familiarity
with APL notation and some simple statisti-

function for the random variable T given
by [5] £(t) = 1/(62 - 01), 61§t§e , and
zero elsewhere, whére 6, and 92 a%e the
parameters specifying the rangé of T. The
rectangular shape of this distribution is
shown in Figure 1. We note that f(t) is
constant between 6, and 6,. The cumula-
tive distribution %unction (CDF) of T,
denoted by F(t), for the uniform case is
given by F(t) = (t - 61)/(9 - 91). Thus,
F(t) is linear in t in the %ange 6 itiez‘
The uniform distribution has mean 2

(91 + 62)/2 and variance (62 - 91) /12.[5]

Since the uniform distribution is continu-
ous and the random numbers arising from
the roll function are discrete, an approx-
imation of a continuous variable by a
discrete set of numbers is necessary.
Fortunately the approximation can be made
quite precise.

To illustrate with an example which we
shall use later, let us generate N random
numbers, where N is any integer greater
than zero, in the interval zero to one,
that is (0,1). Let us further require
that the fineness of the discrete sepgra-
tion of the numbers generated be 10 °.
Then, the APL command to accomplish these
requirements is:

U+(?NpiE8)+1E8 .

To obtain a set of numbers uniformly
distributed in the interval (© ,92), one
need only multiply U by the range

(6, - 8,) and add 61. For example, the
expression

TU«10+40xU
would generate a set of random numbers

uniformly distributed in the range 10 to
50. The numbers so obtained are un--

ordered.
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4. NORMAL DISTRIBUTION

The normal distribution is a continuous
symmetric distribution with density
function [5]
-1 2 2

£(t) = (0v/2ZmW) exp-{(t-u)“/20°},
where ¢>0, -®@<u<w, -w<t<w, Here, u and o
are the mean and standard deviation
respectively of the normal distribution.
A graph of the normal density curve is
shown in Figure 2. The cumulative dis-
tribution function cannot be written in
closed form and requires the evaluation
of an integral. Fortunately, any normal
distribution can be reduced to a
standard normal distribution by the
transformation [5} z = (t - u)/o , where
z has the standard normal distribution
with mean zero and variance one. Thus,
the evaluation of the integral can be
represented by only one set of tables.

Since time is always positive, the
normal distribution should be used only
for those situations in which the mean
is at least three standard deviation
units above zero. This stipulation
assures a very low probability (less
than 0.0013) of negative values.

The simplest method for the simulation of
the normal distribution employs the
central limit theorem of statistics (5].
This highly important theorem basically
states that for agy population with a
finite variance ¢“ and mean p, the dis-
tribution of the sample mean approaches
the normal distribution with variance ¢“/n
and mean u as the sample size n increases.
The sample mean is just the sum of the
observations divided by the number of
observations k.

Let U have a uniform distribution defined
in the interval (0,1); U is called a unit
rectangular variate. Then U has mean 1/2
and variance 1/12. According to the ¢
central limit theorem, the distribution of
means :
k.
T = (Z U-)/k :
Tt :

approaches the normal distribution for i
large k. Hence, the quantity !
(G-1/2) /¥T/72k approaches the standard
normal for large k. Generally, it is
sufficient [2] to take k=12. Let :
2 = (U - 1/2)//7/72k. Then, any normal i
variate T with mean p and standard devia-
tion ¢ can be obtained from the equation
T = u + 0Z. The procedure for generating
a normal variate is then quite simple.
Noting that Z can be written as

z = (‘é ui-k/z)./’rz?)?',

density [4] £(t) =

an APL expression to generate I pseudo-
random numbers from a normal population
with mean » and standard deviation S is,
therefore,

M+Sx ((+/(N,K)p(?(NxK)p1EB)+1EB)-K+2)
x(12+¢K)%0.5 .

The value of X should be specified as at
least 12. However, if values near the
tails of the distribution are of primary
importance, then higher values of X would
be advised, e.g., K specified as 25.

5. LOGNORMAL DISTRIBUTION

The lognormal distribution is a nonsym-
metric continuous distribution that has
density function [1]

£(t) = (to/2m) 1exp—{[ln(t/m)]2/202},
in natural base, where ¢>0,0<m<», and
0<t<~, Here, m and ¢ are the median and
shape parameter respectively of the log-
normal distribution. A graph of several
lognormal density curves is shown in
Figure 3. Note that the lognormal dis-
tribution is defined for only positive
values of t, a property well suited to
reliability work. As with the normal
distribution, the lognormal CDF cannot be
obtained in closed form. However, if T
is the lognormal variate, then &n T is
normally distributed with mean uy = ¢nm
and standard deviation o [4]. Hence, the
lognormal CDF can be determined by
reference to standard normal tables.
lognormgl distribution has,mean
nxexp{o /3) and variance m“w(w-1) where
w = exp{c“} [2].

The

We invoke the relationship of the log-
normal distribution to the standard normal
distribution to generate lognormal pseudo-
random numbers. Thus, if 2 has the
standard normal distribution (mean 0,
standard deviation 1), then T = m exp{oZ}
has the lognormal distribution [2] with
median m and shape parameter o.

A simple APL program to generate N log-
normal pseudo-random numbers from a popu-
lation with median ¥ and shape parameter
S is, therefore,

MxxSx ((+/(N,K)p(?(NxK)p1lE8)+1E8) -K+2)
x(123K)*0.5 .

As for the normal, X should be 12 or
greater, especially if values in the tails
of the distribution are of interest.

6. EXPONENTIAL DISTRIBUTION
The exponential distribution is a continu-

ous distribution with probability --
(1/6)exp{-t/6} , for



t>0, and 6>0. The parameter 8 is called
the mean life of the exponential distri-
bution. The reciprocal 1/6 is the hazard
function [4] for the exponential distri-

bution. Note the hazard function is
constant. A graph of the exponential
curve for 8 = 1 appears in Figure 4. The
CDF is given by F(t) = 1 - exp{-t/6}. The

variance of the exponential distribution
is also equal to the mean life 6 (4].

To simulate the exponential distribution
one uses the following property of the

cumulative distribution fupction: If F is
any CDF with an inverse F ', then for U

uniformly distributed over (0,1), the sub-
stitution of U for F in_the inverse
expression denoted by F ' (U) will generate
a random variable distributed according to
F. The importance of the above property
is that random observations from any
desired distribution can be generated.
First, one obtains pseudo-random numbers
from the interval (0,1). Next,
the inverse transformation of the desired
distribution to these uniform numbers.
transformed numbers will then be distribu-
ted according to the selected CDF.

For the exponentially distributed variate
T, the inverse equation is

Pl = -e2n (1 - U).
Hence, an APL expression to generate
pseudo-random numbers from a population
exponentially distributed with mean life
ML is

E+«-MLx®(?NplE8)+1E8 .

Note U instead of 1-U is used for the
calculation since both represent a
uniformly distributed variate in the 3
interval (0,1).

7. WEIBULL DISTRIBUTION
The Weibull distribution is a continuous
distribution with probability density
function [4]

£0) = (tf 1 /ab)expi- e/ By,

where o,B8,t>0. Here a and B are called
the scale and shape parameters respective-
ly. A graph of several Weibull densities
is shown in Figure 5.8 The CDF is given by
F(t) 1 - exp{-(t/a)"}. We see that B =
corresponds to the exponential distribu~
tion. Furthermore,B§Qe eibull hazard i
rate is given by Bt /o For B = 1, the
rate is constant; for B < 1 the rate de-
creases in time; for B > 1 the rate in-
creases in time. The Weibull distribu-
tion has mean ol [(R + 1)/8], where T is
the gamma function [2], and variance

a“(TI(B+2)/B1-{T[(B+1)/81}).

one applies

The

To generate Weibull distributed numbers, we

use the inverse transformation method. The
ipyerse expression is 1/8
F (U) = af=fn(1 - U)] . Hence, an APL

expression to generate N Weibull distribu-
ted pseudo-random numbers from a popula-
tion with scale parameter 4 and shape
parameter B is

Wedx(-9(?NplEB):1E8)*3B
8. PLOTTING DISTRIBUTIONS

The empirical
real t as the

CDF can be defined for any
proportion of random values
that are less than or equal to t. Hence,
by use of the empirical CDF, any of the
previously discussed distributions can be
plotted. To illustrate, suppose we have
generated N pseudo-random lognormal
numbers, denoted by the symbol L. The
numbers are ordered by executing L+L[4L].
The empirical CDF will be provided by the
APL expression F«(1N):N. Then, the CDF is
plotted as F versus L.

If desired, the theoretical CDF from which
the random sample is drawn can be overlaid
on the sample plot for comparison. The
population CDF would be obtained by sub-
stituting the pseudo-random numbers gener-
ated for the argument t in the equation for
F(t). For example, let ¥ be the pseudo-
random numbers drawn from a Weibull popula-
tion with scale factor 4 and shape factor
B. First order by executing W+«W[4W]. Then
the theoretical CDF is given by

FT«1-%x-(W+4)*B,

Then, for F«(i¥):N, the comparative plot
of both CDF's is accomplished by plotting
FT and F versus ¥. An example of such a
plot is shown in Figure 6. For testing

. goodness of fit, Kolmogorov-Smirnov tests

i[1,4] would be appropriate.

If one wishes to plot-and compare a
theoretical density function to the simu-

. lation output, one can make a histogram

1

Go

plot of the pseudo-random numbers and com-
pare the histogram to the population
density function evaluated at selected
points, for example, at the midpoints of
the interval. This procedure would also
facilitate application of the chi-squared
{1,4] goodness of fit test to the data.
An example of a histogram comparison is
given in Figure 7, for the simulation of
200 numbers from a standard normal popula-
tion.

9. REFERENCES

1. Bury, K.V., "Statistical Models in
Applied Science," New York: John Wiley
& Sons, Inc., 1975. -



2. Hastings, N.A.J. and Peacock, J.B.,
"Statistical Distributions," London:
Butterworths, 1974.

IBM, “"APL Language GC26-3847-2," San
Jose: IBM Corporation, 1976.

Mann, N.R., Schafer, R.E., and
Singpurwalla, N.D., "Methods for
Statistical Analysis of Reliability
and Life Data," New York: John Wiley
& Sons, Inc., 1974,
Mendenhall, W. and Schaeffer,
"Mathematical Statistics with
Applications," North Scituate:
Press, 1973.

Trindade, D.C. and Haugh, L., "Non-
parametric Estimation of Lifetime
Distribution Via the Renewal Method,"
Chicago: Presented at American
Statistical Association Meeting, 1977.

3.

4.

5. R.L.,

Duxbury
6.

)

8,°8,

| 2 .
The Uniform Probability Density
Function.

(1)

Fig. 1.

05

»

The Normal Probability Density
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Fig. 3. The Lognormal Density Function.
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Fig. 5. The Weibull Probability Density
Function.
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N=100 from Weibull Distribution.
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Density Function.



